Home + Recent Actions | Browse | Search | My settings | My alerts

ScienceDirect

« Previous 1 of 12,898 Next »

Search ScienceDirect Q Search

Help

Show thumbnails in outline

Abstract

Highlights

Keywords

- 1. Introduction
- 2. Material and methods
 - 2.1. Plant material
 - Table 1.
- 2.2. Plant DNA extraction, barcode amplification and sequencing
- 2.3. Sequence analysis
- 2.4. Chemicals for chromatography, standards and validation
- 2.5. Isoflavones extraction by MSPD
- 2.6. HPLC determination of isoflavones
- 3. Results and discussion
- Plant identification using DNA barcodes
- Table 2.
- 3.2. Quantification of isoflavones spontaneous species of Leguminosae

- Table 3.
- 3.3. Correlation between the chemical composition and plant phylogeny

Conclusions
 Acknowledgements

Food Chemistry

More options...▼

T PDF (262 K)

Volume 134, Issue 4, 15 October 2012, Pages 2262-2267

Analytical Methods

Export citation

Isoflavone determination in spontaneous legumes identified by DNA barcodes

Sara C. Cunha^a, [≜]. 1, [™], Miguel A. Faria^a, [≜]. 1, [™], Tiago Sousa^a, ^b, Eugénia Nunes^b

- * REQUIMTE, Laboratory of Food and Water Science, Faculty of Pharmacy of University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- ^b CIBIO-ICETA, Faculty of Science of University of Porto, R. Padre Armando Quintas, 7, 4485-661 Vairão, Portugal

Received 22 December 2011. Revised 27 February 2012. Accepted 7 March 2012. Available online 15 March 2012.

http://dx.doi.org/10.1016/j.foodchem.2012.03.028, How to Cite or Link Using DOI

Permissions & Reprints

Abstract

Isoflavones have been associated with several health protective effects. In this work spontaneous legume plants were screened as putative sources of dietary isoflavones. A molecular identification of the collected species was performed throughout DNA barcoding using *ITS*, *rbcL*, *rpo*C1 and *mat*K sequences. The use of a multi-locus barcoding system complemented with basic morphological information allowed the unequivocal identification at the species level of 90% of the samples. The determination of isoflavone content was performed by high-performance liquid chromatography with diode-array detection. Total average contents in the studied species were significantly different, *Ononis natrix* and *Cytisus scoparius* possessing the highest total isoflavones content (396 and 273 mg kg⁻¹, respectively) and *Lotus creticus*, the lowest (20 mg kg⁻¹). The correlation of total isoflavone content with the phylogeny of this set of plants as determined by the *rpoC1* sequences was evaluated for the first time.

Highlights

► Spontaneous legume plants were screened as potential sources of dietary isoflavones. ► A DNA

- Application of PDF417 symbology for 'D... Computer Methods and Programs in Biomedicine
- Four years of DNA barcoding: Current advance...
 Infection, Genetics and Evolution
- Identifying earthworms through DNA barcodes:...
 Pedobiologia
- Novel approaches based on DNA barcoding and ...
 - Food Chemistry
- A critique of earthworm molecular phylogenet...
 Pedobiologia
- View more related articles

Altmetric

N> Key Terms in Article

OpenHelix Tutorial Suites

use genomics and bioinformatics software, tools and databases mentioned in this article:

View tutorials on how to

MCBI Overview

View the complete OpenHelix catalog